Problem I
Linear Recurrences
Input
The first line of input contains an integer $1 \le N \le 40$, the degree of the recurrence. The next line of input contains $N+1$ integers $a_0, a_1, \ldots , a_ N$ indicating that the linear recurrence is $x_{t} = a_0 + \sum _{i=1}^ N a_ i x_{t-i}$. The next line contains $N$ integers $x_0, \ldots , x_{N-1}$ giving the initial values for the recursion. All the coefficients $a_0, \ldots , a_ N$ and initial values $x_0, \ldots , x_{N-1}$ are integers between $-10^9$ and $10^9$ (inclusive).
The next line contains an integer $1 \le Q \le 10$, the number of queries. Then follow $Q$ lines of queries. Each query consists of two integers $T$, $M$ where $0 \le T \le 10^{18}$ gives the index and $1 \le M \le 10^{9}$ is a moduli.
Output
For each query $T$, $M$, output a line containing $x_ T \bmod M$.
Sample Input 1 | Sample Output 1 |
---|---|
2 0 1 1 0 1 6 1 100000 2 100000 3 100000 4 100000 5 100000 6 100000 |
1 1 2 3 5 8 |
Sample Input 2 | Sample Output 2 |
---|---|
2 5 7 9 36713 5637282 4 1 10000 1375 1 3781 23 34683447233 1571385 |
7282 0 16 299255 |
Sample Input 3 | Sample Output 3 |
---|---|
3 1 2 3 4 0 0 0 1 42424242424242 1000000 |
552200 |