Hide

Problem F
Pseudoprime numbers

/problems/pseudoprime/file/statement/en/img-0001.jpg

Fermat’s theorem states that for any prime number p and for any integer a0, apa(modp). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2<p1000000000 and 1<a<p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing “0 0”. Each test case consists of a line containing p and a.

Output

For each test case, output “yes” if p is a base-a pseudoprime; otherwise output “no”.

Sample Input 1 Sample Output 1
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
no
no
yes
no
yes
yes
Hide

Please log in to submit a solution to this problem

Log in